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J .  Phys. A: Math. Gen. 15 (1982) 3255-3272. Printed in Great Britain 

The drift velocity of a hard-sphere Lorentz gas 

K Olaussen and P C Hemmer 
Institutt for Teoretisk Fysikk, University of Trondheim, 7034 Trondheim-NTH, Norway 

Received 2 March 1982 

Abstract. We study the Boltzmann equation for a Lorentz gas with scattering on stationary 
hard spheres in the presence of a constant field S.  The exact initial and asymptotic time 
evolutions are given and compared with numerical calculations. Starting with an initial 
equilibrium velocity distribution we study the influence of the initial temperature T on 
the drift velocity of the Lorentz gas. The drift velocity quickly reaches a maximum and 
then decreases slowly towards zero. In particular an upper bound, close to 0.8 8‘/2A1’z,  
exists for the drift velocity. Here A = (na2n)-’ is the mean free path, related to the density 
n and radius a of the scatterers. In an initially cool gas the drift velocity slows down as 
t-’13 soon after the maximum is passed. In an initially hot gas, however, there are two 
asymptotic regimes. After a time of order A1’28-1’z the drift velocity stays constant for 
a time interval whose length is proportional to T312, and eventually decays as fC1l3. 

1. Introduction 

Lorentz models, in which independent classical particles move through an infinite 
random array of stationary scatterers, are useful as simplified models of physical 
realities (Larentz 1905, Hauge 1974), and for illustrating or testing general procedures 
in kinetic theory (Hauge 1970). 

For hard-sphere interactions the differential cross section is isotropic. In a constant 
and homogeneous force field dp the linear Boltzmann equation for the distribution 
function f(u, r, t )  can thus be written 

where y1 is the number density of the stationary scatterers, and a is the distance of 
closest approach to a scattering centre. The projection operator P averages over all 
directions a(o) of the velocity 

The field dp may represent an electric field acting upon charged particles, or a 
gravitational field. 

Restricting ourselves to the spatially homogeneous case, and with dp = (0, 0, 8), 
equation (1) simplifies to 

af+ 8-== af - ( P  - 1)f 
at av, A 

where A = (rra2n)-’ is the mean free path. 
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An exact solution of equation (3) does not seem feasible. We can, however, obtain 
exact information in the small- and large-time limits. 

The quantity of central interest here is the drift velocity (U) for a Lorentz gas that 
is characterised initially by a Maxwell distribution corresponding to a temperature T, 

(4) f(u, 0) = ( m / 2 ~ k T ) ~ / ~  exp(-mv2/2kT). 

Both in the small-t and in the large4 regime our results for the drift velocity are 
uniformly valid for all initial temperatures. 

This model has been studied previously by Piasecki and Wainjrub (1979). They 
obtained the asymptotic decay (48) of the drift velocity. We go beyond this by 
determining also the small-t behaviour ( 0  2), the corrections to the asymptotic decay 
and the influence of the initial condition upon the asymptotic behaviour ( 0  3). For 
an initially hot Lorentz gas, in particular, there are in fact two distinct asymptotic 
regimes. 

We also consider the so-called two-term approximation, in which merely the 
spherical harmonics 1 = 0 and 1 are kept, and argue that it should yield an excellent 
description of the present drift problem. The two-term approximation is then solved 
numerically in 0 4. 

Section 5 contains our concluding remarks. We show here how the asymptotic 
decay of the drift velocity can be understood in simple physical terms. 

2. The short-time behaviour 

One might believe that the initial evolution could be obtained by a straightforward 
expansion of the distribution function in powers of t .  Using equation (3) to solve the 
approximations term by term, one obtains the following result for the drift velocity 

[ 4 ( 2 k 7 ) ” 2 t 2  I 5kT 1 2m *I2  
(U)’& t - -  - t - (-) ( A  2 8 2  + 10 s) t4  + O(t 5 ) ]  . 

3A rrm 6A2m 15A r k T  m 
( 5 )  

The divergence for T = 0 in the fourth-order term shows that this expansion procedure 
is not uniformly valid and must be revised. 

A well behaved small-time expansion is obtained by going to an interaction 
representation where the collision-free drift in the field is taken into account explicitly, 
and the expansion is ordered in terms of the number of collisions. 

Introduce a freely falling coordinate system by 

u=u-dPt f (u ,  t )  = g b ,  t ) .  

The Boltzmann equation (3) which may be written 

now takes the form 
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This defines the collision operator K(t ) .  The iterative solution of (7), 

g(r)=g(0)+~rd~’K(f’)*g(O)+lldf’K(t’)* 0 0 Jot’ dt”K(t”)*g(O)+. . . 
=go+g1+g2+. * .  (8) 

now constitutes the desired expansion. The dependence upon v is not shown in the 
notation. Averages over the n-collision contribution g, are denoted by 

(F(o) ) ,  = d3v g,(t) - F ( b t  + v). I 
Thus 

(9) 

since the drift velocity is assumed to be zero at t = 0 when the field is turned on. 
The one-collision term 

yields the following contribution to the drift velocity 
r l  c 

We have performed the integration over v, using 

J d 3 a ( a + c ) S ( a - b ) = c . 4 ~ b 2 .  (13) 

The time integration can now be done, with the result 

(u ) l= -&ldP8- ’  d 3 u f ( ~ ,  O)(JU + 8 t ) 3 - ~ 3 ) .  (14) I 
For a spherically symmetric initial velocity distribution, f(u, 0) = f(u, 0), the angular 
integration yields 

For the special case T = 0 f(u, 0) = S3(u), and (14) yields 

(U) 1 = - ;A -‘a 8t3 T = 0. (16) 
For all other initial distributions one may expand (14) or (1 5 )  in powers of t. (15) yields 

u3duf(u,0)+O(t4)  

which for the Maxwellian (4) equals 

(U)’ = -$ (2&T/~m)’ /~A- ’dPt*  +O(t4). (18) 
Comparison of (16) and (18) shows the non-uniformity of the two limits t + O  and 
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T+O. The small-t behaviour for any temperature must be described by a scaling 
function F ( x  ), depending upon the dimensionless ratio between a thermal velocity 
and a free-fall velocity, 

x =(kTm-1)1'2/gf. (19) 

(u )1=  - f 8 8 A - ' t 3 F ( X )  (20) 

The scaling function F ( x )  is determined by (15) and (19) 

with 

1 

= 4(2/n)'12x + ( ~ / T ) ' / * x - ~  

= (1+6x2+3x4)  erf(2-'/*x-') 

+(2/.n)'12(5x3+x) e x p ( - $ ~ - ~ ) - 8 ( 2 / 7 ~ )  x 

dy(1 -y)' exp(-$y*x-*) 5, 
(21) 1 / 2  3 

shown in figure 1. The limiting behaviour 

0 0 5  1 1 5  
X 

Figure 1. The scaling function (21). 
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reproduces the previous results (16) and (18). The simple approximation 

F ( x )  = (1 + 3 2 ~ ~ / . ~ ) " ~  (24) 

represents the scaling function with an error nowhere exceeding 0.7%. The corres- 
ponding approximation for the drift velocity reads 

(U) = 8[t - ~ t 2 A - ' ( 8 2 t 2 + 3 2 k T / ~ m ) 1 ' 2 ] .  (25) 

The two-collisions contribution ( u ) ~  can be evaluated in a similar way. We give 
here the result to second order for T = 0 only 

( u ) = 8 t [ l - f 8 A - ' t 2 + ~ ( 7 - 4 1 n  2)8'K2t4+O(t6) ] .  (26) 

3. The asymptotic behaviour 

3.1. Heuristic estimate 

The corresponding problem with a velocity-independent relaxation time r, i.e. a 
Boltzmann equation 

af 1 
at au T 
af+ 8 - = - (P  - 1)f 

can, as shown in the appendix, be solved exactly, with the following results for the 
drift velocity and the average kinetic energy: 

(28) (U), = (u)o e-''T + ~ T ( I  -e-''T) 

(U'), = ( ~ ~ ) ~ + 2 8 ~ . r t ( l  -e-r'T). (29) 

( U 2 )  = 2g2tr. (30) 

and 

After the transient period the kinetic energy thus increases linearly with time 

In our case the relaxation time r is not constant, but inversely proportional to the 
speed, r = A/u. From the result (30) it is natural to surmise that the asymptotic 
behaviour of the speed is determined by u 2  - 8'tA/u, or 

(31) 
By the same reasoning one obtains from (28) the following estimate for the drift velocity 

(32) 

213 113 113 U - %  A t . 

I ( U ) ~ = % - ~ A / U - $  113 A 2 f3  t -113 . 

We shall now show that these estimates are in fact correct. 

3.2. Expansion in spherical harmonics 

By cylindrical symmetry the velocity distribution can be expanded in spherical har- 
monics as follows 

m 

fb,  t )  = C fib, t ) ~ d c o s  e).  (33) 
1 =o 
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Inserting into ( 3 )  and using well known relations for the Legendre polynomials, we 
obtain the following equations for the amplitudes f i  

and for 1 2  1 

‘&Yv-’f~+l+vA-’f ,  =o .  1+1 ( I  + 1)(1+2)  
21-1 21+3 

(35) 

Here a / a t  and a/av are denoted by a dot and a prime, respectively. 

f l  are then determined by the two equations 
The two-term approximation is a truncation of ( 3 5 )  at 1 = 2. The amplitudes fo  and 

(36a 1 
i36b j 

where time is measured in units of K 1 ’ 2 A 1 ’ 2 ,  velocity in units of 8 . The 
physical justification lies in the fact that the distribution function is isotropic both for 
t = 0 and for t + 03. Therefore, it suffices to take the leading deviation from isotropy, 
namely f l  cos 8, into account. The isotropy at t = 0 is present by assumption, the 
asymptotic isotropy is a consequence of the steady increase in kinetic energy which 
makes the time intervals between collisions shorter and shorter. Anisotropy of the 
velocity distribution can only develop between collisions since the hard-core scattering 
is isotropic. 

f 0 + 3 f l  1 ,  +:v-IfI = o  

fl+ f; + uf1=  0 
1 / 2  1 /2  A 

3.3. Leading asymptotic behavioitr 

Let us for the moment make the additional assumption that the term f l  in equation 
(366) is negligible compared with the remaining two terms. This reduced two-term 
approximation can readily be solved, and the additional assumption will be shown to 
be asymptotically correct. 

With this assumption 

f 1 =  -fb/v (37) 

f - - -2f ;+fL, (u-2  I 1 
0-t’ fo). 

by which ( 3 6 a )  takes the form 

(38) 

Through the new variable 
3 / 2  r = v  (39) 

equation (38) transforms into the diffusion equation for a radially symmetric two- 
dimensional situation 

. 3 a2 l a  
f o = z ( g + ;  &o. 

The general solution of this diffusion problem is well known 

1 
f o  = d2r’ g(r’) exp(-lr -r’I2/3t) 
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with an arbitrary (‘initial’) radial function g(r‘). The angular integration yields a Bessel 
function of imaginary argument 

.m 

(42) 
L 

fo  = 5 exp(-r2/3t) 1 r’ dr’ g(r’) e x p ( - r f 2 / 3 t ) I 0 ( 2 r r ’ / 3 t ) .  
0 

For fixed values of the velocity, and for t + CO, the right-hand side of (42) approaches 

(43) 
L 
- exp(-r2/3t) J r’ dr‘ g(r’) = (47rtI-l exp(-r2/3t). 
3t 0 

Normalisation of f(u, t )  

4 m  03 lo 4.srv2dvf~(v, t ) = T  lo d 2 r f o = l  (44) 

has been used in (41) to establish the value of the integral in (43). 

the velocity distribution function 
We are thus led to the following asymptotic behaviour of the symmetric part of 

which, by (37), implies 

The drift velocity 

has, by (46), the corresponding asymptotic behaviour 
r= 3-’/3r($)g1/3~ 2/3t-1/3 

(47) 

now with units restored. 
It is clear that the asymptotic evaluation of (42), hence also the results (45) and 

(46), cannot be uniformly valid for all velocities. More precisely, it fails when r/t is 
of the order of unity or larger, i.e. for 

3/2 v b t  . (49) 

The characteristic range of the velocity distribution functions (45) and (46) is, however, 
much smaller than this, merely 

(50) 

For v >> t1/3,  fo and fl  decay exponentially fast, and the difference between the correct 
asymptotic tail and the distributions given will therefore not influence the asymptotic 
results for moments, e.g. (48). 

The second moment of f o  yields the kinetic energy. By equation (46) the dominating 
asymptotic contribution is monotonically increasing, as follows 

( 5  1) 

1/3 v = t  . 

~ 32/3r($g4/3~2/3~2/3 

now with units restored. 
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The present results (48) and (51)  are in agreement with the heuristic estimates of 
D 3.1. We have not yet, however, justified the assumptions on which the asymptotic 
results rest. 

Let us first verify consistency in the sense that the neglected term f l  in (36h i  
really is asymptotically negligible compared with the other terms f b  and u f , .  Using 
(46) we have 

f i  c 7  2 
U f ,  3t2 tc 

- - O(t -4  i, 

since U scales like 
velocity interval of interest. 

Hence the neglected term is asymptotically negligible in the 

3.4. Influence of initial temperature on the leading asymptotic behaviour 

We now want to find the higher corrections to the leading-order results (48) and (51). 
The most direct approach would be to take into account the neglected terms in 
equations (34)-(35), and arrange them in a systematic fashion. However, we should 
also have to provide the initial conditions for the (asymptotically valid) evolution 
equations one will obtain in this manner. But these are to be determined from the 
initial distribution - after integrating the equations through the region where t is of 
order unity. Since this region cannot be handled in any approximation, a systematic 
large-time perturbation expansion does not seem feasible at first sight. Note that this 
difficulty did not arise in the leading-order calculation, because there the only informa- 
tion needed was the exactly conserved normalisation of the velocity distribution. 

To account for the initial conditions we must investigate the eigenfunction 
expansion of the solution. If we write the evolution equations (34)-(35) in operator 
form, 

f = H f  fi(U, 0) = fP(c 153 I 

a formal solution is given by the eigenfunction expansion 

where $(s) and 4(s) are the properly normalised right and left eigenfunctions of H 

( H  + s)$,(s) = 0 

( H  + s)d ( s )  = 0. 

The adjoint operator, H', in equation (556)  is defined by the requirement that 

( H - 4 , 9 )  = (4, HG) 1561 

for all 4, (I. It therefore depends upon the choice of inner product ( ,  I .  We shall use 
the convenient choice 

To simplify the notation we have assumed no degeneracy of the eigenfunctions. 
This cannot be justified at this stage, but we shall argue below that this is so in the 
present case. 
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For large times t the integral (54) receives its contribution from the region of small 
s. Thus we only need to know the eigenfunctions in this region. In order to set up 
a systematic perturbation scheme we introduce a small book-keeping parameter E ,  

and make the following scalings 

where T ,  6, Y, 41 and 41 are considered to be of order 1. These scalings are forced by 
consistency, and are in agreement with the previous discussion. With these quantities 
equation (55a )  becomes 

1 d  2 -  
540 -5 (z+;) * L 1 =  0 

and for 1 3  1 

(596)  

The (matrix) differential operator H can be found from these formulae. We then use 
the definition (56) in conjunction with the inner product (57) to find the adjoint H’. 
It turns out that H + = H  provided we restrict ourselves to functions f which are 
sufficiently regular at the origin. The correct condition is 

This is stronger than the requirement that boundary terms should vanish when we 
perform partial integrations in (56) (this only requires that vfi(u) = 0), and 
follows from the condition that the operator defined by equation (59) should represent 
the differential operator a/au, correctly at the origin. (The problem is that if a$(v) /au,  
has a S-function contribution at the origin, then this term will be lost in equation 
(59) . )  Since H is self-adjoint the right and left eigenfunctions are equal, $(s) = $(s). 

It is now straightforward to solve equation (59) to zeroth order in E .  First (596) 
implies that 

With this inserted into (59a) and a change of variables 

we arrive at the Bessel equation of order zero 

Due to the boundary condition (60) 4; must be given by the regular solution, 6; = J o ( x )  
(modulo a possible normalisation). 

We next solve recursively for the @, using (596). In the new variables we have 
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By comparing the recursion relation for the Bessel functions 

d 
dx 

J l ( X )  = - [x-'+'J,-l(x)] 

we find the solution to be 

now with the original variables restored. 
It remains to verify that the solution (66)  has the correct normalisation, at least 

to order E O .  But to this order only the 1 = 0 components contribute to the scalar 
product. Thus we find 

(Bo( [ ) ,  (to([')) =(@O(s), $O(s')) = 5 du u 2 J o ( ~ ~ ) J o ( ~ )  + O ( E ~ ' ~ )  
m 

0 

= s (s - s f )  + o(& 4/3) (67)  
which is the orthonormality relation required. Here we have used the well known 
relation 

lom dx J,, (&).I,, (&) = 4s ( k  - k '). 

Since our approximation is valid only for small values of s, while a completeness 
relation requires integration over all s, there is no a priori reason to expect our 
solutions also to satisfy the completeness relation 

S ( u  - u t )  
2 Ski. J o m d s ~ k ( ~ ; ~ ) $ l ( ~ ' ; ~ ) = ( - 1 ) 1 ( 2 1 + 1 )  4 T U  

Nevertheless, it does turn out that the k = I = 0 component of this equation is satisfied. 
When the initial condition is the Maxwellian (4) of temperature T, the inner product 

entering the expansion (54) becomes 

Here we have used the integral representation (Watson 1922) 

im-E dz T(-z) ( z ) ~ + * *  

In order to compute the moments ( u 2 )  and (U,) we also need the integrals 

J " ( x ) = J - ~ , - . G ~ ( ~ + ~ + ~ )  2 

m 

t O ( s )  = lo du u4J0(J4su 3/3) = 

and 

Strictly speaking these integrals do not exist in the proper sense, but are defined by 
analytic continuation from convergent integrals (Watson 1922). The problem arises 
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because of an illegal change of integration order (the s integration should be performed 
before the moments are computed). However, our procedure leads to the correct 
final result and is justified if we interpret all intermediate computations in the sense 
of distributions. 

At T = 0 the inner product (70) equals (4rr)-'12 and all components f? of the 
distribution function are simply found by Laplace transforming the eigenfunction (66). 
This yields 

in agreement with the previous results (45) and (46). At T = 0 the moments ( v 2 )  and 
( v , )  are similarly given as the Laplace transforms of equation (70), which reproduces 
the results (51) and (48). 

However, by including the factm (70) we can also find the dependence upon the 
initial temperature, uniformZy in the variable 

This gives the asymptotic drift velocity in the leading-order uniform approximation 

where 

The scaling function G o ( y )  plays much the same role as F(x)  did in our short-time 
analysis. 

The reader should note that this eigenfunction method of solution to order e o  
leads to the same result as the one given by equation (42) in 0 3.3, provided we take 
g (r') to be the true (spherically symmetric) initial distribution of the physical problem. 
However, our more direct previous analysis did not allow us to conclude that the 
initial condition for the leading-order asymptotic equation should be identical to the 
actual initial condition. Thus, while our previous results were valid only in the limit 
t + 00 for a fixed initial condition, the eigenfunction expansion allows us to study the 
solution at fixed large times for arbitrary initial conditions. 

To conclude this section let us recall the argument for not having a degenerate 
spectrum near s = 0. This is due to the boundary condition (60), which enforces a 
unique solution to our equations to all orders in e413. Since this argument is based 
upon the small-s expansion a degeneracy starting at some finite value of s is not 
ruled out. However, this will merely lead to exponentially small corrections. 
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3.5. Corrections to leading asymptotic behaviour 

We can now, in principle, proceed to solve equation (59) order by order, by expanding 
the eigenfunctions in powers of c413, 

(77) 

As carried out above to lowest order, these series can be inserted into (54) from which 
we can compute the drift velocity (uz(f)) .  Provided the integrals (U, (27) and ($“,fo) 
are all convergent, this will result in a uniform expansion of the form 

However, in practice it is very difficult to compute even the n = 1 term in (78). 
We find the following equation for 6: 

d 1 - 2 d  

dv dv dv dv 

( k  +$)’ = A  .f (-5v / 3) v k = o  k ! ( k + 2 ) !  

This can be solved in terms of a power series 
m 4; = NJo(J45v3/3)+ 1 A k v 3 k c 2  

k = O  

where 

k r( j + $ ) 2  

- - ZO r ( k  + $ ) 2 j  ! ( j + 2 )  ! 
A -  

(79) 

and where the constant N,(( )  is to be chosen so that the proper normalisation of 
eigenfunctions is maintained. However, we have not been able to determine this 
constant or to verify the orthonormality condition (67) to order c413. But we may 
still extract some information about the dependence upon the initial condition. Since 

(82) 1 2 2 -  
q5 O(S ) + 4 ‘ ( s )  = N ( S  )[ 1 - U ~ S U  + O(U ‘))3 

it follows that 

Here the term ( k T / 6 m )  d2/dt2 is due to the next-to-leading-order approximation. 
Nevertheless, for arbitrary large times t there is always a low enough temperature T 
such that it dominates the leading-order term. 

More interesting perhaps is that this is a point where the two-term approximation 
fails even in a qualitative way. Taking account of terms with I = 0 and 1 only in our 
equations leads to the eigenfunction 

(84) 1 2  2 -  

to be contrasted with the exact expansion (82). Thus, the two-term approximation 

4 O i S )  + 4  ‘(s) = N(s)[1 +zs U &U3 + 0 ( ~ 4 ) ]  
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predicts that for low enough temperatures, T, there will be a time interval where 

( U ,  ( t ) ) T z O >  ( U ,  ( f ) ) T = O .  (85 )  

In fact, in our numerical solution of the two-term approximation (figure 3)  we observe 
precisely this. But we believe this to be an artefact of the two-term approximation, 
and not a true property of the exact solution. 

3.6. Comments 

Equation (75) constitutes our main result for large times. It describes, to dominating 
order, the decay of the drift velocity for t >>A "'8-"', regardless of the initial tem- 
perature. 

and t>> 
A - 1 8 - 2 ( k T / m ) 3 / 2  to be precise), an expansion in inverse powers of t arises. The two 
first terms are provided by (75): 
( v , ( t ) )  = r (5 )3 -1 '3g1 /3~2 /3 t - ' / 3  

1/z8-1/2 For any given initial temperature, however, and t + CO ( t  >>A 

(86) 
The tC5l3 term receives contributions both from (75) and from the next-order term 
in (78) .  The second term in (86) shows clearly the temperature depression effect on 
the asymptotic tail. 

- 2 7 / 2 3 - 7 / 3 ~ - 1 / 2 r ( ~ ) ( k ~ / m ) 3 / 2 8 - 5 / 3 h  -1/3t-4/3 + 0 ( t - 5 / 3 ) .  

For an initially hot gas there exists a time interval 

A ' / 2 8 - 1 / 2 < <  r << A-'$-2(kT/m)3/2 (87) 
in which the situation is completely different. Equation (75) shows that in this case 
the drift velocity is approximately constant in time and equal to 

( U , )  = $ h % ' ( m / 2 ~ k T ) ' / ~ .  (88) 
This result is easily interpreted (Huxley 1960). The temperature is so high that the 
effect of the field is a minute perturbation for t < < A - 1 8 - 2 ( k T / m ) 3 / 2  so the kinetic 
energy of a particle hardly changes. A particle with velocity v that has traversed a 
free path x at an angle 8 with the field direction has been deflected sideways a small 
distance 

& T ( x / v ) ~  sin 6 

since it has spent a time interval x / v  on this free path. The advancement in the field 
direction is thus 

A = 38(x/v)' sin'6. (89) 

The probability P(x)  dx that a particle collides after traversing a free path in (x, x +dx)  
is given by 

The advancement in the field direction after a large number N of free paths thus equals 

P ( x )  = dx/A. 

N L = N ~ ~ A ' U - ' .  

Since it takes a time NA/u to traverse N mean free paths the drift velocity for particles 
with velocity U equals 

$%'AV-'. 
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The final average over the velocity distribution yields 

(U,) = $3 (U-') = $%'A ( 2 m l ~ k T ) " ~  

which is (88). 

4. The global picture 

Having now determined both the small-t behaviour and the large-t behaviour, shown 
in figure 2, we may, by interpolation, assess the complete time evolution of the drift 
velocity. Rather than bridging the gap with an arbitrary interpolation formula we 
integrate numerically the two-term approximation (36) .  As a preparatory step we 
eliminate fo between (36a)  and (366)  and write the result as follows: 

(90) f ,, ll3F - 3 ,, 4/3Ftl = 0 

The hyperbolic partial differential equation (90) is solved numerically as a finite 

0 8  

0 6  

h 

s 0 4 

0 2  

0 

T: 0 

1 2 3 4 5 
t 

Figure 2. The short-time approximation (25) and the asymptotic result (75) for the drift 
velocity. The upper fully drawn curve corresponds to T = 0, as shown. The six curves 
below correspond to higher initial temperatures, a = 5 ,  2 ,  1, 0.7, 0.5 and 0.3, respectively, 
with a = m/2kT (cf figure 3). The short-time approximation is continued until the 
one-collision contribution (20) reached 25% of the no-collision result (10). For T = 0 the 
broken curve shows the influence of including the two-collision contribution, equation 
(26). The dotted line corresponds to the drift velocity in the absence of collisions. (Time 
is measured in units of % - ' / * A  ' I 2 ,  velocities in units of %'/'A ' I 2 . )  
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0 8 .  

difference equation on the rectangular grid At = 0.0125, ATJ = 0.05 in the domain 
0 s TJ s 200, 0 s t s 5 .  The boundary conditions F(0, t )  = F(200, t )  = 0 are used 
together with the initial conditions 

F(TJ,O) = 0 f i (T ,  0) = 2.rr ci 77 e ~ p ( - a g * / ~ )  ci = m/2kT (92) -3/2 5/2 

0 <---. 

a consequence of (4) and (366). 
The result of the numerical integration is shown in figure 3 for a selected set of 

initial temperatures. (It is not feasible to include initial temperatures lower than those 
corresponding to ci = 5  with the present grid because of the large gradients). The 
results bear out the expected general features: the particles are accelerated in the 
direction of the field, more effectively the cooler the gas is. The drift velocity is seen 
to pass through a maximum and gradually slow down. 

according to figure 3. This must be considered a surprisingly short time, since a particle 
initially at rest needs a time 21/2%!-1/2A ‘I2 to be accelerated a distance equal to one 
mean free path A. 

1/2 112 The maximum drift velocity is reached after a time of the order of 1.68- A 

0 1 2 3 4 5 
t 

Figure 3. The drift velocity in the two-term approximation for different initial tem- 
peratures. Curves are labelled with values of a = m/2kT. The broken curve represents 
extrapolated values corresponding to T = 0. The dotted line corresponds to the drift 
velocity in the absence of collisions. (Time is measured in units of g-’/2A1’2, velocities 
in units of  PA^".) 

The maximum drift velocity decreases with increasing initial temperature, as 
expected, and has an absolute upper bound close to 

0.881/2A (93) 
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5. Concluding remarks 

In the present study we have shown how the drift velocity for an initially thermalised 
Lorentz gas grows when a field is turned on, and how it eventually slows down, by 
establishing exact short-time and long-time expansions. 

For short times the behaviour is qualitatively different for low or high temperatures. 
In physical terms the distinction between the two cases is whether the kinetic energies 
of the particles at their first collision are mainly thermal or produced by the field. 

Asymptotically the drift velocity slows down as t - ' l 3 .  Our lowest-order asymptotic 
result, equation (48), is in agreement with a recent calculation of Piasecki and Wainjrub 
(1979) who deduced the asymptotic scaling form by appealing to the solution of the 
corresponding one-dimensional model. In physical terms one can understand the 
asymptotic result as follows. 

Let u,(uA) be the velocity of a particle immediately before (after) the n th collision, 
at time t,. Hence 

Since U: is isotropically distributed, the increase in the kinetic energy E is on average 

(95) 2 2 E,+1-E,=$m8 ( f n + l - t n )  . 
On the other hand the average time-of-flight between collisions depends upon the 
kinetic energy: 

(96) 

In the asymptotic stage where f n + l  - t, becomes small we approximate ( 9 5 )  and (96) by 

tncl - t ,  = A/J2En/m. 

barring numerical factors. Hence 

and, moreover, from (94) 

as we already have seen. 

needed to reach the asymptotic regime for an initially cool gas. 
It is clear from (98) and figure 3 that only a small number of collisions, n - 10, is 
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Appendix. The constant-relaxation-time case 

The constant-relaxation-time equation 

af 1 
at au T 
at.+, -= - (P - 1)f 

can be solved exactly by the same procedure that van Leeuwen (Weijland and van 
Leeuwen 1968) used to solve the zero-field Lorentz model with spatial gradients 
(Hauge 1970). 

By Laplace-Fourier transforms 

f ( s ,  k) = lom dt e-" ld3v eik"f (U, t )  

equation (Al)  takes the form 

f = [ l + s ~ - i ~ k , ] - ~ ( P f + ~ h )  

with 

h (k) = 1 d3v eikuf (u, 0). (A41 

Operation with the projection operator P on equation (A3) yields a closed equation 
for the spherical symmetric part Pf Inserting this solution for Pf back into equation 
(A3) one obtains the exact solution 

(A51 
Moments of the velocity distribution function can now be obtained by expansion 

of (A5) in powers of k. In particular 

Expanding to second order in k, and assuming the field 8 to be directed along the z 
axis, we find 

(v:) =f(u2)0+$PT(t+t e- ' / ' -27+2~ e-t1T) (A71 

and 

(vt)  = +(vz>o + $ @ T ( t  - 2t + T - T 

In the long-time limit these results imply equation (30) in the text. 
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